Possible ATP release through lysosomal exocytosis from primary sensory neurons.
نویسندگان
چکیده
The adenosine triphosphate (ATP) plays important roles under physiological and pathological conditions such as traumatic brain injury, neuroinflammation and neuropathic pain. In the present study, we set out to study the role of lysosomal vesicles on ATP release from the dorsal root ganglion neurons. We found that the lysosomal vesicles, which contain the quinacrine-positive fluorescence and express the vesicular nucleotide transporter (VNUT), were localized within the soma and growth cone of the cultured dorsal root ganglion neurons. In addition, the number of the quinacrine staining was decreased by application of lysosomal exocytosis activators, and this decrease was suppressed by the metformin and vacuolin-1, which suppressed lysosomal exocytosis. Thus, these findings suggest that ATP release via the lysosomal exocytosis may be one of the pathways for ATP release in response to stimulation.
منابع مشابه
Secretion of ATP from Schwann cells through lysosomal exocytosis during Wallerian degeneration.
The present study demonstrates that adenosine triphosphate (ATP) is released from Schwann cells through lysosomal exocytosis during Wallerian degeneration and in response to stimulation. In primary Schwann cell cultures, ATP was stored in lysosomal vesicles. ATP could then induce Ca(2+)-dependent lysosomal exocytosis. Among three stimulants of lysosomal exocytosis (glutamate, NH(4)Cl and zymosa...
متن کاملATP Release through Lysosomal Exocytosis from Peripheral Nerves: The Effect of Lysosomal Exocytosis on Peripheral Nerve Degeneration and Regeneration after Nerve Injury
Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become se...
متن کاملIncrease of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.
In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal roo...
متن کاملGranule-specific ATP requirements for Ca2+-induced exocytosis in human neutrophils. Evidence for substantial ATP-independent release.
Ca2+-induced exocytosis in neuronal and neuroendocrine cells involves ATP-dependent steps believed to 'prime' vesicles for exocytosis. Primed, docked vesicles are released in response to Ca2+ influx through voltage-gated Ca2+ channels. Neutrophils, however, do not possess voltage-gated Ca2+ channels and appear to have no docked vesicles. Furthermore, neutrophils have several types of granules w...
متن کاملExocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex
Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+)-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+)-waves and purinergic modulation of neuronal activity and sleep homeostasis. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 430 2 شماره
صفحات -
تاریخ انتشار 2013